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Three finite-difference algorithms are proposed to solve a low-Mach number ap-
proximation for the Navier–Stokes equations. These algorithms exhibit fourth-order
spatial and second-order temporal accuracy. They are dissipation-free, and thus well
suited for DNS and LES of turbulent flows. The key ingredient common to each of the
methods presented is a Poisson equation with variable coefficient that is solved for the
hydrodynamic pressure. This feature ensures that the velocity field is constrained cor-
rectly. It is shown that this approach is needed to avoid violation of the conservation
of kinetic energy in the inviscid limit which would otherwise arise through the pres-
sure term in the momentum equation. An existing set of finite-difference formulae for
incompressible flow is generalized to handle arbitrary large density fluctuations with
no violation of conservation through the non-linear convective terms. An algorithm
which conserves mass, momentum, and kinetic energy fully is obtained when an
approximate equation of state is used instead of the exact one. Results from a model
problem are used to show both spatial and temporal convergence rates and several test
cases are presented to illustrate the performance of the algorithms.c© 2000 Academic Press
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1. INTRODUCTION

Large Eddy simulation (LES) and/or direct numerical simulation (DNS) can provide
detailed information about turbulent flows that may be difficult to obtain experimentally.
However, for the particular class of flow with low-Mach numberM and strong density
variation, the classical compressible Navier–Stokes equations are not well suited for com-
putation. The small time step limitation dictated by numerical stability requirements of ex-
plicit methods would require excessive computing times to solve practical flow problems.
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Indeed the sound waves move much faster than entropy or vorticity waves whenM¿ 1.
At the same time, in flows where the dominating mechanism is free, forced or mixed con-
vection, the acoustical mode of energy carries only a small fraction of the energy present
in the fluctuating part of the flow. These observations led several authors [1–4] to propose
a set of low-Mach number equations which do not contain acoustic waves but can still
describe the entropy and vorticity modes as well as compressibility due to exothermicity
of chemical reactions. A fractional-step method is used most often, the pressure field be-
ing obtained by solving a Poisson equation with the time derivative of the density field as
part of the source term [3, 5] destabilizing part of the algorithm [6]. Even-ordered finite
difference approximations to this derivative were found to be more stable but density ratios
larger than 3 are difficult to compute. Sandoval (reported in [6]) found that by decreasing the
Reynolds number, larger variations in density could be achieved. Larger density ratios seem
computable by using a predictor-corrector time-stepping algorithm in which the predictor
uses a second-order Adams–Bashforth time integration scheme and the corrector relies on
a quasi-Crank–Nicolson integration with the inversion of a pressure Poisson equation at
each step [7, 8].

As far as incompressible Navier–Stokes equations are concerned, experience has shown
that the kinetic energy must be conserved if a stable and dissipation-free numerical method
is sought. Indeed, such a property ensures that the sum of the square of the velocities cannot
grow, even through non-linear interactions between modes. As a consequence, a numerical
scheme which conserves kinetic energy cannot be unstable. Moreover, it makes unnecessary
the use of numerical stabilization through up-winding which is known to introduce too much
artificial damping in DNS/LES computations. Morinishiet al. [9] developed a set of fully
conservative (mass, momentum, and kinetic energy) high order schemes for incompressible
flow. However, none of the numerical studies on low-Mach number flows cited above
addressed this issue. In the present study it is shown that the global conservation of kinetic
energy is a common feature of incompressible and low-Mach number flows in the inviscid
limit. A nearly conservative fourth-order finite difference scheme is proposed in which one
solves a Poisson equation with variable coefficient for pressure. Also, this algorithm makes
use of a generalization of the Morinishi’s finite difference formulae for variable density
flow. These two ingredients lead to algorithms which are well suited for LES and/or DNS
computations. In particular:

• no numerical dissipation from the spatial discretization is used to stabilize the com-
putation; and,
• they can handle density ratios much larger than 3.

The low-Mach number approximation and the numerical method are discussed in Sec-
tions 2 and 3. An error analysis is conducted in Section 4 and some numerical experiments
are discussed in Section 5 to show the potential of the algorithm.

2. LOW-MACH NUMBER APPROXIMATION

In compressible flows, a natural parameter to measure the effects of compressibility is
the ratio of the dynamic to the thermodynamic pressure, viz.γM2. To derive the low-Mach
number equations, one expands the dependent variables as a power series inε= γM2, which
is a small parameter (see [1, 3, 6] for details on the derivation of the low-Mach number
equations). Substituting these expansions into the compressible Navier–Stokes equations



SCHEMES FOR LOW-MACH NUMBER FLOWS 73

and collecting the lowest order terms inε yields

∂ρ

∂t
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∂xj
= 0 (1)
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As body forces have no impact on the numerical methods presented in Section 3,
they have not been included in Eq. (2). All the variables are normalized using the ref-
erence stateρref, uref, T ref= Pref

o /ρref, Cref
p =C∗p(T

ref),µref = µ∗(T ref), andkref= k∗(T ref)

where the superscript∗ represents dimensional quantities. AlsoRe= ρrefurefL ref/µref and
Pr =µrefCref

p /kref are the Reynolds and the Prandtl number whileγ is the ratio of specific
heats at the reference state.ui , ρ, T , k, µ, andCp stand for the non-dimensionalized ve-
locity vector, density, temperature, thermal conductivity, dynamic viscosity, and specific
heat.τi j =µ(∂ui /∂xj + ∂u j /∂xi − (2/3)δi j (∂uk/∂xk)) andqj = k(∂T/∂xj ) are the vis-
cous stress tensor and the heat flux vector, respectively. Moreover,P may be interpreted as
the hydrodynamic pressure. In the low-Mach number approximation, the thermodynamic
pressurePo only depends on time and must be computed if it is not constant. The equation
of state is simply

Po = ρT. (4)

Since density is uniquely determined by the temperature (and the thermodynamic pressure
which is constant in space), the energy equation acts as a constraint which is enforced by
the hydrodynamic pressure. Combining Eqs. (1), (3), and (4), this constraint is
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Integrating over the flow domainV leads to the following ODE for the thermodynamic
pressure in a closed system:
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Since
∫

V (∂/∂xj ) (k(∂T/∂xj )) dV= ∫S k(∂T/∂xj ) dSj , this relation expresses how the
rate of change of the mean pressure is affected by the heat flux through the surfaceS of
the domainV and the gradients of heat capacity of the gas. In many practical applications
such as piston engines and internal ballistics the fluid may be considered as a calorifically
perfect gas so thatCP = 1 and the time derivative ofPo is simply
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= γ
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Thus the constraint on the velocity field becomes
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Note that the numerical methods presented in Section 3 remain usable even if the fluid is
not considered as being a calorifically perfect gas. If the system considered is open, then the
thermodynamic pressure is set by atmospheric conditions. If it is closed then the amount
of mass in it,M0, is constant over time so that by integrating the equation of state over the
whole domain one obtains the following expression for the thermodynamic pressure:

Po(t) = M0∫
V (1/T) dV

. (9)

Note that in the limit of an inviscid flow of a calorifically perfect gas the thermodymanic
pressure remains constant over time (from Eq. (7)) and the velocity field is divergence-free
(from Eq. (8)).

The solution (ρ, ui , T , P, Po) is completely described by Eqs. (1)–(4) and (7). The
constraint Eq. (8) should also be satisfied since it is a linear combination of Eqs. (1), (3),
and (4).

3. NUMERICAL METHOD

The numerical method chosen for solving the variable density momentum and tem-
perature equations is a generalization of a fully conservative fourth order spatial scheme
developed for incompressible flows on staggered grids by Morinishiet al. [9]. A scheme to
solve the momentum equations in non-conservative form is described in the following Sub-
section 3.1. A scheme with “good” conservative properties is discussed in Subsection 3.2.
Both of these algorithms involve a variable coefficient Poisson equation for the pressure.
For completeness, Subsection 3.3 presents an alternative formulation in which the pressure
is obtained, as proposed in most of the previous studies, through a Poisson equation with
constant coefficient and approximate source term.

3.1. Scheme in Non-conservative Form: AdvSC

For a uniform mesh, the advective term in the momentum equation, Eq. (2), is discretized
as

ρu j
∂ui
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≡ 9

8

(
9

8
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8
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8
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8
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8
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, (10)

where the finite-difference operator with stenciln acting onφ with respect toxi is defined
as

δnφ

δnxi
= φ(xi + nhi /2)− φ(xi − nhi /2)

nhi
(11)

and the interpolation operator with stenciln acting onφ in thexi direction is

φ̄nxi = φ(xi + nhi /2)+ φ(xi − nhi /2)

2
. (12)



SCHEMES FOR LOW-MACH NUMBER FLOWS 75

ρ(4 j ) is a fourth order interpolation ofρ in thexj direction,

ρ(4 j ) = 9

8
ρ̄1xj − 1

8
ρ̄3xj . (13)

When the density is constant, Eq. (10) reduces to the advective form (Adv.-S4) in Morinishi
et al. [9]. The pressure term in Eq. (2) in discretized by
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and the discrete divergence operator is defined consistently,
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The viscous terms in Eq. (2) are written using the generic form
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Note thatµ is successively interpolated in thei and j -direction (applying Eq. (13) toµ
once ini , once in j ) to give the fourth-order interpolationµ(4i ),(4 j ). The advective term for
the temperature is discretized as

ρu j
∂T

∂xj
≡ 9

8
ρ(4 j )u j

δ1T

δ1xj

1xj

− 1

8
ρ(4 j )u j

δ3T
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. (17)

A semi-implicit time marching algorithm is used in which the diffusion terms in the
wall normal direction are treated implicitly with a Crank–Nicolson scheme, while a third
order Runge–Kutta or second order Adams–Bashforth scheme is used for all other terms.
The temperature equation is advanced first so thatρn+1 is known via the state equation
ρ = Po/T , wherePo is first assessed using Eq. (9) written at timen+ 1. Then a fractional
step method is used to solve the momentum equation,

ρ(4i ),n+1 un+1
i − un

i

1t
= ρ(4i ),n+1 un+1

i − ûi

1t
+ ρ(4i ),n+1 ûi − un

i

1t

= βk(I
n+1+ I n)+ γk En + ζk En−1− 2βk∇d Pn − 2βk∇dδPn+1, (18)

whereI andE represent all the spatial implicit and explicit terms except for the pressure at
n and the pressure updateδPn+1 = Pn+1− Pn. The parametersβk, γk, andζk (k = 1, 3)
can be chosen so that the mixed Runge–Kutta/Crank–Nicolson (RK-CN) time stepping is
recovered after the third sub-step (see Spalart [10]). One can also choose their values so
that the mixed Adams–Bashforth/Crank–Nicolson (AB-CN) time stepping is obtained at
each sub-step. The values for the coefficientsβk, γk, andζk are given in Table I.
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TABLE I

Numerical Parameters for Time Stepping

RK-CN and AB-CN

Sub-step βk γk ζk

RK-CN k= 1 4
15

8
15

0

RK-CN k= 2 1
15

5
12

−17
60

RK-CN k= 3 1
6

3
4

−5
12

AB-CN k= 1, 3 1
2

3
2

− 1
2

Equation (18) is then split into a decoupled set which is a second-order approximation
in time to the original equation:

ρ(4i ),n+1 ûi − un
i

1t
= βk(I

n+1+ I n)+ γk En + ζk En−1− 2βk∇d Pn (19)

ρ(4i ),n+1 un+1
i − ûi

1t
= −2βk∇dδPn+1. (20)

Equation (19) is solved for̂ui by using the discretizations (10), (14), and (16). Then (20)
is divided byρ(4i ),n+1 before its discrete divergence is taken to obtain

∇d ·
(

1

ρ(4i ),n+1
∇dδP

)
= 1

2βk1t

(∇d · ûi −∇d · un+1
i

)
. (21)

A similar Poisson equation with variable coefficient was solved by Bell and Marcus [11] to
impose the divergence-free constraint for variable-density flows—see also [12, 13].

Since the transport equation forT has been advanced prior to the momentum equation,
the last term in the equation for the pressure variation is known from Eq. (8), written at
time n + 1. The variable coefficient Poisson equation Eq. (21) for the pressure is solved
using the (pre-conditioned) conjugate gradient algorithm. In the case where homogeneous
directions exist, it is worth pre-conditioning Eq. (21) by the elliptic operator,

∇d ·
(

1〈
ρ(4i ),n+1

〉∇d

)
, (22)

where〈 〉 denotes a spatial averaging in the homogeneous directions. In this case one can
make use of a FFT-based fast Poisson solver at each iteration of the conjugate gradient
algorithm. In the more general case it is worth solving for the modified unknownδP/

√
ρ

[14]. The advantage of solving Eq. (21) to update the pressure is that the divergence-free
constraint is recovered in the inviscid limit, as it has to be from Eq. (8). This is not the case
when a backward approximation of∂ρ

∂t is used to compute the source term of a linear Poisson
equation forδP as proposed earlier [3, 6] (see also Subsection 3.3). The other advantage is
that the pressure terms remain energy conserving in the high-Re number limit, as discussed
in the following subsection.

3.2. Fully Conservative Scheme: DivSC, DivSCapprox

Although the previous scheme was found to be accurate, it only conserves momentum and
kinetic energy to its own order of accuracy. Experience has shown that the latter quantity
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must be conserved exactly if a stable and dissipation-free numerical method is sought.
Morinishi et al. [9] developed a set of fully conservative (mass, momentum, and kinetic
energy) high order schemes for incompressible flow. In the general case of the Navier–
Stokes equations without body force, the transport equation for the kinetic energyρk per
unit volume reads

∂ρk

∂t
+ ∂ρu j k

∂xj
= PSj j − ∂Puj

∂xj
+ ∂τi j ui

∂xj
− τi j Si j . (23)

Let us consider a periodic (or infinite) domain so that, after Eq. (23) is integrated over
the domain, the flux terms∂ρu j k/∂xj and∂Puj /∂xj make no contribution. Due to the
dissipation termτi j Si j , the question of conservation of the kinetic energy is only relevant in
the inviscid limit whereτi j = 0. We know from Eq. (8) that in this limit, the velocity field is
divergence-free, that is,Sj j = 0. Thus global conservation of kinetic energy is a common
feature of incompressible and low-Mach number flows. The purpose of this section is to
investigate how this property can be extended in discrete space.

Let us define the following discrete approximations of the possible forms for the non-
linear term in the momentum equation:
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The forms(Adv.)i , (Div.)i , and (Skew.)i are the discrete equivalent to the advective
ρu j (∂ui /∂xj ), conservative∂ρui u j /∂xj , and skew-symmetric12(ρu j (∂ui /∂xj )+(∂ρui u j/

∂xj )) forms of the convective term. Note that the discrete operator in Eq. (24) is the same
as that in Eq. (10). The following relations holds between these three discrete forms,
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where
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is the discrete form of the divergence of the momentum vector∂ρu j /∂xj .



78 F. NICOUD

A key assumption in the semi-discrete analysis proposed in Morinishiet al. [9] for
incompressible flow is that the operator(Cont.) is identically zero so that the three forms
(Div.)i , (Adv.)i , and(Skew.)i are equivalent. Since(Div.)i is conservative a priori for the
momentum equation and(Skew.)i is conservative a priori in the kinetic energy equation,
a fully conservative scheme is obtained as soon as the velocity constraint∂u j /∂xj = 0
is imposed properly through the pressure correction step. In the present case where the
density is not constant, the velocity constraint∂u j /∂xj = 0 (in the high-Re limit) does
not imply that∂ρu j /∂xj is zero. Thus the discrete operators(Div.)i , (Adv.)i , and(Skew.)i
are not equivalent in the low-Mach number case, meaning that a fully discrete analysis
(including the time discretization) must be conducted to achieve conservation of kinetic
energy.

A conservative scheme for the momentum can be derived by considering the momentum
equation in its divergence form. The first guess for the velocity is obtained by solving

ρ̂(4i )ûi − ρ(4i ),nun
i

1t
= −γk(Div.)ni − ζk(Div.)n−1

i − 2βk(Pres.)ni , (31)

where ˆρ can be eitherρn or ρn+1 or any intermediate value. Then the projection step is
written as

un+1
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ûi − 2βk

1
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∇dδP1t, (32)

where the Poisson equation forδP must be
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)
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i

)
. (33)

Obviously, Eqs. (31), (32), and (33) constitute a scheme which is momentum conserving.
To investigate whether it also conserves kinetic energy, let us multiply Eq. (31) byûi + un

i

and integrate over the whole domain. The overall contribution of the pressure term involving
un

i in the kinetic energy equation behaves like

∫
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The first two terms of the RHS of Eq. (35) do not contribute because they are in divergence
form. The last one is identically zero because the variable coefficient Poisson equation,
Eq. (33), is solved with∇d ·un+1

i = (9/8)(δ1un+1
i /δ1xi )−(1/8)(δ3un+1

i /δ3xi ) = 0 imposed
in the source term (i.e., the projection step Eq. (32) imposes the divergence-free constraint
exactly). The other pressure term isûi (Pres.)ni and its overall contribution is of order1t
becausêui = un

i + O(1t) and the integral ofun
i (Pres.)ni is zero.
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Using Eq. (26), the overall contribution of the convective terms in the RHS of Eq. (31)
may be written as∫

V

(
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The first integral in Eq. (36) contributes to the order1t because(Skew.)i is kinetic
energy conserving in nature and becauseûi , un

i , andun−1
i are equal to the order1t . Thus

an approximation to the order1t of the overall contribution of the full RHS of Eq. (31) is
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On the other hand, the contribution of the LHS of Eq. (31) may be written∫
V

ρ̂(4i )(ûi )
2− ρ(4i ),n(un

i )
2

1t
dV +

∫
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i ûi

ρ̂(4i ) − ρ(4i ),n

1t
dV. (38)

Comparing Eqs. (37) and (38) it appears that the discrete rate of change of the kinetic
energy (the first integral in Eq. (38) is at most of order1t if one defines the intermediate
density as

ρ̂ − ρn

1t
= −γk(Cont.)n − ζk(Cont.)n−1. (39)

In the context of a second order scheme, the same definition of ˆρ was adopted (C. Pierce,
private communication) to achieve approximate conservation of kinetic energy.

Multiplying the projection step Eq. (32) bŷui + un+1
i and integrating over the whole

domain, the following expression can be derived:

∫
V

ρ(4i ),n+1
(
un+1

i

)2− ρ̂(4i )(ûi )
2
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dV =
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ûi u
n+1
i
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1t
dV + O(1t). (40)

This shows that the global rate of change of the kinetic energy is of order1t only if
ρ̂(4i ) − ρ(4i ),n+1 = O(1tn), n ≥ 2. Unfortunately,n is only 1 in the most general case.

A conservative scheme (DivSCapprox) is obtained if one accepts that the state equation,
Eq. (4), is verified to the order1t only, viz.,

ρn+1 = ρ̂ = Po

Tn+1
+ O(1t). (41)

In this case, the error in the global kinetic energy conservation is at most of order1t for
each sub-step. If one accounts for the cancellation of error in the full third-order Runge–
Kutta procedure, it can be shown that the error is actually of order1t3. The same order
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was achieved for incompressible flows in Morinishiet al. [9]. The Adams–Bashforth time
integration is not considered here since it is unstable for inviscid flows (see Section 4).

3.3. Scheme with Approximate Poisson Equation: DivSCρ

The third algorithm is similar to the one in Subsection 3.2 except for the Poisson equation
for the pressure. It is briefly described in this section for completeness. One keeps the same
scheme, Eq. (31), for the first guess of the velocity. The projection step is now written as

ρ(4i ),n+1un+1
i = ρ̂(4i )ûi − 2βk∇dδP1t, (42)

where the Poisson equation forδP must be

∇d · ∇dδP = 1

2βk1t

(∇d ·
(
ρ̂(4i )ûi

)−∇d ·
(
ρ(4i ),n+1un+1

i

))
. (43)

The divergence of momentum at time leveln+ 1 is unknown but it can be assessed by
using the continuity equation:

∇d ·
(
ρ(4i ),n+1un+1

i

) = −δρ
δt

n+1

. (44)

Since the temperature field is advanced first, the equation of state, Eq. (4), can be used to
compute the density at leveln+ 1. Then a backward discretization for the time derivative
of density can be used to assess the source term in Eq. (43). SinceδP is of order1t , the
source term in the Poisson equation is of order1t too. Since in this source term the time
derivative of density is divided by the time step (see Eq. (43)), the backward discretization
must be at least second-order accurate for consistency. A possible choice is

δρ

δt

n+1

=
[
(1tn +1tn−1)

2−1t2
n

]
ρn+1− (1tn +1tn−1)

2ρn +1t2
nρ

n−1

1tn1tn−1(1tn +1tn−1)
. (45)

Obviously, Eqs. (31), (42), and (43) constitute a scheme which is momentum conserving.
However, it is not kinetic energy conserving because the divergence-free constraint is not
recovered in the inviscid limit. Thus the overall contribution of the pressure term does not
vanish as in Subsection 3.2. The test cases in Section 5 show that this algorithm is less
stable and accurate thanDivSCandAdvSC. However, the Poisson equation, Eq. (43), is
with constant coefficient and can be solved very efficiently. Subsequently, it seems that this
approach was used in all the previous studies dealing with low-Mach number flows [1–8].
The approach involving a Poisson equation with variable coefficient as in Subsections 3.1
and 3.2 was preferred in [11–13].

The conservative properties of the schemes described in Section 3 are summarized in
Table II. Recall thatAdvSC, DivSC, andDivSCρ stand for the schemes discussed in Subsec-
tions 3.1, 3.2, and 3.3, respectively.DivSCapprox denotes the case where the state equation
Eq. (4) is not enforced exactly—see Subsection 3.2. The particular conservation properties
of each of the schemes considered are denoted by a cross. The columns “convective,” “pres-
sure,” and “projection” refer to kinetic energy conservation with respect to the convection
and pressure terms (in the momentum equation) and the projection step, respectively. The
table also specifies whether or not the exact state equation (4) is enforced.
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TABLE II

Properties of the Different Algorithms

Mass Momentum Convective Pressure Projection State

AdvSC x x x
DivSC x x x x x
DivSCapprox x x x x x
DivSCρ x x x x

Note.A scheme has a given property if the entry is checked.

From the channel flow computations performed in the course of this study, (see
Subsection 5.5), the CPU time required per iteration forDivSC is between 1.2 and 2
times higher than that needed forDivSCρ ; the higher the temperature ratio, the higher
the cost. The cost difference arises mainly through the resolution of the variable coefficient
Poisson equation (33). This difference is expected to decrease in cases with complex ge-
ometry which require the use of an iterative method for Eq. (43) of algorithmDivSCρ .
Recall that a FFT-based fast Poisson solver has been used in the present study. The cost
for algorithmAdvSCis slightly smaller than forDivSCsince the continuity equation is not
advanced in time.

4. ERROR ANALYSIS

In order to investigate the stability limit of the previous algorithms in the 1D linear case,
a Fourier analysis was performed which is presented in Subsection 4.1. Convergence tests
are then described in Subsections 4.2 and 4.3 to show both time and space accuracy of the
methods developed in this paper.

4.1. Stability

A Von Newmann analysis of the linear 1D convection-diffusion equation

∂u

∂t
+ c

∂u

∂x
= ν ∂

2u

∂x2
(46)

was performed to assess the stability of the first step of the algorithms described in the
previous section. Note that in this simple case the forms (Adv.)i and(Div.)i in Eqs. (24) and
(25) reduce to (convection velocityc omitted)

∂u

∂x
≡ 27(ui+1− ui−1)− (ui+3− ui−3)

48h
. (47)

Also, in the case of constant viscosity, the spatial differencing Eq. (16) for the diffusion
term is proportional to

∂2u

∂x2
≡ −1460ui + 783(ui+1+ ui−1)− 54(ui+2+ ui−2)+ (ui+3+ ui−3)

576h2
. (48)
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Denoting the semi-discrete operatorA4 such that∂u/∂t = A4un
i , it is straightforward to

demonstrate using Eqs. (47) and (48) that its Fourier transformÂ4(ω)may be expressed as

1tÂ4 = − j
CFL

24
(27sin(ωh)− sin(3ωh))+ Fo

288
(−730+ 783 cos(ωh)

− 54 cos(2ωh)+ cos(3ωh)), (49)

whereCFL= c1t/h andFo= ν1t/h2 denote the Courant and the Fourier numbers respec-
tively while j 2=−1. For the full discretization to be stable, it is necessary that1tÂ4(ω)

be contained in the stability region of the time differencing for all values ofω. The locus of
1tÂ4(ω) is shown for different values ofCFL andFo together with the stability region of
the Adams–Bashforth algorithm in Fig. 1b. Figure 1a shows the same quantities for the clas-
sical second-order semi-discretization where1tÂ2=− jCFL sin(ωh)+2Fo(cos(ωh)−1).
As expected, the fourth-order scheme appears to be less stable than the second-order one.
Since both semi-discretizationŝA2 andÂ4 are anti-symmetric in the convection part, the
Adams–Bashforth time differencing is always unstable forFo= 0. For finite viscosity, both
spatial schemes are stable, although the domain of stability is smaller for the present formu-
lation. For pure diffusion, viz.CFL= 0, the critical Fourier number for̂A2 is 0.25 whereas
for Â4 it is 0.197. The same analysis was performed for the third-order Runge–Kunta time
differencing (not shown). In the absence of viscosity (Fo= 0), the criticalCFL number
is 1.54, compared to the equivalent value for the classical second-order scheme which
is 1.8.

FIG. 1. Von Newmann stability analysis: (a) second-order centered scheme, (b) present scheme. —, Adams–
Bashforth stability region;. . . , locus of1tÂ. Upper half-planes,Fo= 0.1 andCFL varies (increment 0.2); bottom
half-planes,CFL= 0.5 andFo varies (increment 0.05).
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4.2. Time Accuracy

Time accuracy of the numerical methods described in Section 3 was assessed through a
numerical experiment in the 2D periodic domain [0, 2π ] × [0, 2π ]. The initial condition
was set tou(x, y, t = 0) = ∂ψ/∂y+sin(x)×cos(y)/(RePr ), v(x, y, t = 0) = −∂ψ/∂x+
cos(x) × sin(y)/(RePr ), P(x, y, t = 0) = 0 andT(x, y, t = 0) = 1− cos(x) × cos(y)
so that the constraint on the velocity field, Eq. (8), is satisfied initially (assuming constant
viscosity). The stream function is equal toψ = cos(x)× cos(y). Several simulations were
performed withRe= 2000 andPr = 1 and using a uniform 16× 16 grid. The number of time-
steps (Adams–Bashforth time integration) used to cover a given time interval was increased
from 4 to 32, corresponding to Courant numbers in the range [0.011, 0.088]. One more
computation was performed for which 256 iterations were necessary in order to generate
a highly accurate reference solution. The error in the solutions obtained at larger1t was
computed as theL2-norm of the difference in the solution for a given time increment when
compared with the reference solution. Regarding theu-velocity, second-order accuracy is
demonstrated in Fig. 2 for all the considered algorithms. The same convergence rate was
obtained for thev-velocity and for the temperature. An interesting point to note is that the
convergence rate for the pressure is only unity. This is not related to the density variations
considered here since the same phenomenon is true for the incompressible Morinishi’s
algorithm [9]. As discussed by Perot [15], the order of accuracy of the pressure update does
not affect the order of accuracy of the velocity field.

4.3. Spatial Accuracy

Other numerical experiments were conducted to study the spatial accuracy of the al-
gorithms. Only the results forAdvSCandDicSCare discussed in this section since the
spatial differencing for all the previous algorithms reduces to one or the other of these two
approaches. The initial condition was the same as that used in Subsection 4.2 and four
different uniform grids were considered, namely ones containing 162, 482, 1442, and 4322

cells. The solutions obtained after a given integration time are denotedS16, S48, S144, and
S432 respectively (S may denote either one of the velocity components, the pressure, or the

FIG. 2. L2-norm of the difference between the solution (u-velocity or pressure) and the “exact” solution as
a function of the number of iterations performed to compute the given time interval.s, DivSC; d, DivSCapprox;
u, AdvSC.
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TABLE III

Spatial Convergence Rates forAdvSCand DivSC

u v P T

AdvSC 3.89; 4.19 3.89; 4.19 4.06; 4.35 3.87; 3.92
3.89; 4.18 3.89; 4.18 4.04; 4.36 3.87; 3.90

DivSC 3.88; 3.60 3.88; 3.60 4.06; 3.58 3.87; 3.99
3.87; 3.59 3.87; 3.59 4.03; 3.59 3.87; 3.98

Note.For each entry, the first two values are determined from
Eq. (50) with (n, m)= (16, 48) and (n, m)= (48, 144) while the
third and fourth values are from Eq. (51) with (n, m, k)= (16,
48, 144) and (n, m, k)= (48, 144, 432).

temperature). This grid sampling was chosen so that all the velocity and pressure nodes of
the 162 staggered grid are common to all the grids. TheL2-norm of the difference between
two solutions can be computed on the coarser mesh without further interpolation. It is be-
lieved that in doing so one obtains a more reliable estimation of the spatial convergence rate.
For all the computations, the Courant number was kept to a small value (CFL≈ 5× 10−3)
so that the errors associated with the time differencing are small with respect to the spatial
differentiation. The number of iterations was 16 for the coarsest grid, 432 for the finest one.
The convergence rateσ was computed in two different ways. First the solution obtained
with the finest grid (S432) was interpreted as the “exact” solution. Then assuming a spatial
error of the formC.hσ , the convergence rate was estimated by

σ ≈ ln[L2(Sn − S432)] − ln[L2(Sm − S432)]

ln 3,
(50)

where (n, m) is either (16, 48) or (48, 144). The other way of computingσ does not require
knowledge of the exact solution [11] and assumes that theL2-norm of the difference between
two successive grid levels is proportional to the grid spacing in the coarser mesh. It is then
straightforward to show that

σ ≈ ln[L2(Sn − Sm)] − ln[L2(Sm − Sk)]

ln 3
, (51)

where (n, m, k) is either (16, 48, 144) or (48, 144, 432). Both estimates Eqs. (50) and
(51) were applied to the velocity components, the pressure, and the temperature fields.
The results are shown in Table III. The fourth-order accuracy of the methods presented in
Section 3 is demonstrated.

5. NUMERICAL TESTS

A few test cases were designed to illustrate the performance of the numerical methods
described in the previous section, including the computation of a 1D high-amplitude pulse
of density in an inviscid flow, a 1D small amplitude pulse of density in a viscous flow,
2D random fluctuations of velocity and temperature, 2D small amplitude fluctuations in
a channel, and 3D large amplitude fluctuations in a channel. A brief description of the
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FIG. 3. Basic test cases for the low-Mach number algorithms.

different test cases is provided in Fig. 3 which also summarizes the assumptions and the
objectives for each test case. The time integration must be RK-CN for the inviscid test
cases while either RK-CN or AB-CN can be used for the viscous ones. RK-CN has been
used for the test cases in Subsections 5.1, 5.3, and 5.4. The time integration is AB-CN in
Subsections 5.2 and 5.5. The results obtained are discussed in more detail in the following
subsections.

5.1. The 1D Euler Convection

If the Peclet number is infinite, the velocity field must be divergence-free, that is,u must be
constant in 1D. Also, the pressure should remain constant. To test the ability of the different
formulations to reproduce this feature of Eqs. (1)–(3), consider the domain 0≤ x≤ 1, pe-
riodic in x. The initial condition isu= u0= 1, P= 0, andT = 1+ Aexp[−((x − x0)/a)2]
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FIG. 4. Root-mean-square of pressure as a function of the grid spacing at timet = 20a/u0. —, Prms ∝ 1x4;
d, DivSC; u, AdvSC; n, DivSCρ .

with A= 1, x0= 0.5, anda= 0.05. When the grid containsNx = 24 points, only 6 points
are used to describe a Gaussian perturbation. Figure 4 showsPrms/ρ0u2

0 as a function of
the grid spacing (this quantity is also the error inPrms since the exact solution isPrms= 0).
Three grid levels were considered: 24, 48, and 96 points inx. The rms of pressure is assessed
for the timet = 20a/u0. The CFL number is of order 0.5 in all cases. SinceAdvSCrenders
the exact solution for this particular test case, the corresponding results are not included in
the figure. The divergence is zero forDivSCbecause it is explicitly enforced through the
Poisson equation, Eq. (33). On the other hand, the divergence-free constraint is not enforced
in the algorithmDivSCρ and the velocity does not remain constant. Since the error in the
backward difference equation, Eq. (45), is proportional to a high-order time derivative of
density, one expects the error in the source term of the Poisson equation, Eq. (43), to increase
with the amplitude of the density perturbation. In other words, the error in the divergence of
velocity should be proportional to the amplitudeA of the initial temperature perturbation,
at least for small values ofA. This is illustrated in Fig. 5.

FIG. 5. Maximum of divergencedu
dx

as a function of the amplitudeA of the temperature perturbation.
—, du

dx
∝ A; n, DivSCρ .
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FIG. 6. Root-mean-square of pressure as a function of the Prandtl number.Prms is non-dimensionalized by its
theoretical value as a function ofT ′, viz. (4/3R2

e P2
r )(∂

2T ′/∂x2)rms. Note that the abscissa isPr − 3/4. —, exact
solution Eq. (54);s, DivSC; u, AdvSC.

5.2. Small 1D Perturbations

In the case where the Reynolds number is finite but where the perturbation in temperature
is small (A¿ 1), the analytical resolution of Eqs. (1)–(3) can be conducted and the structure
of the perturbation which propagates is given by

ρ ′ = −ρ0

T0
T ′ (52)

u′ = 1

RePr

∂T ′

∂x
(53)

p′ = 4

3R2
e P2

r

∂2T ′

∂x2

(
Pr − 3

4

)
. (54)

An interesting feature is that the pressure fluctuation should vanish in the limitPr = 3
4.

Figure 6 shows the error in Eq. (54) in the caseNx = 24,a = 0.05, A = 0.01, andRe = 50.
The initial condition is uniform foru andP and the physical time simulated is large enough
(t ≈ 160a/u0) so that the values reported in the figure are asymptotic values. BothDivSC
andAdvSCare in complete agreement with the theory. In order to derive the analytical
relationship Eq. (54) betweenp′ andT ′, one makes use of the constraint on the divergence
of the velocity field which reduces to Eq. (53) in the present case. Since this constraint is
not properly imposed by the algorithmDivSCρ , there is no reason to expect that this method
gives results in agreement with Eq. (54). Instead, the pressure fluctuation should only depend
on the initial temperature fluctuation (shape and amplitude). Accordingly, Fig. 7 shows
that the rms of pressure behaves likeP2

r when scaled by(4/3R2
e P2

r )(∂
2T ′/∂x2)rms as in

Fig. 6.

5.3. The 2D Random Perturbations

To validate the results of Subsection 3.2 with numerical tests, inviscid flow simulations
were performed on a 2D periodic domain. The analytical solution dictates that the to-
tal momentum in each direction〈ρui 〉 and total kinetic energy〈K 〉= 1

2〈ρu2
i 〉 should be
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FIG. 7. Root-mean-square of pressure as a function of the Prandtl number.Prms is non-dimensionalized by its
theoretical value as a function ofT ′, viz. (4/3R2

e P2
r )(∂

2T ′/∂x2)rms. The abscissa isPr . —, Prms ∝ P2
r ; n, DivSCρ .

conserved in time. The domain is 0≤ x≤ L, 0≤ y≤ L and a 24× 24 mesh is used.
Solenoidal velocity fields are used as the initial condition together with random temper-
ature fluctuations. The initial mean kinetic energy is of order 1.5 while Trms≈ 0.15〈T〉 at
t = 0. Figure 8 shows the relative error for the total kinetic energy〈K0− K 〉/〈K0〉 after
an integration time oft = 0.125L/

√〈K0〉. As expected from Subsection 3.2, the error for
the schemeDivSCdoes not behave like1t3 because of the violation in the conservation of
kinetic energy related to the non-linear equation of state Eq. (4). On the other hand, it ap-
pears that the same scheme with the approximate equation of state (Eq. (41)) conserves the
global kinetic energy to the order1t3 as predicted in Subsection 3.2. The schemeDivSCρ
violates the conservation of kinetic energy even if the approximate equation of state is used.
This is because the divergence-free constraint is not recovered in the inviscid limit when
the Poisson equation, Eq. (43), is used. Thus the pressure term is not kinetic energy con-
serving forDivSCρ (see Subsection 3.2, Eq. (35)) which was found unstable for the present
test case. The convective terms in the algorithmAdvSCviolate the conservation of kinetic
energy.

FIG. 8. Kinetic energy conservation error (〈K0 − K 〉/〈K0〉) as a function of the Courant number. —,1t3

behavior; ---,1t behavior;s, DivSC; d, DivSCapprox.
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5.4. Linear Stability in a Channel

To check the accuracy of the algorithm in the case where the physical properties vary
in space and time through the temperature, the evolution of low amplitude eigenmodes in
laminar channel flow is simulated. The linear stability problem in a channel flow between
two isothermal walls with temperatureT1 = 1− δT

2 andT2 = 1+ δT
2 was studied by Suslov

and Paolucci [16] under the low-Mach number assumption. They found that the critical
Reynolds number increases with the parameterδT

2 . It is of order 40,000 forδT2 = 0.4,
compared to 5,772 in the isothermal case (δT = 0). In their analysis the dimensionless
thermal conductivity and dynamic viscosity are given by Sutherland’s law,

k(T) = T3/2 1+ Sk

T + Sk
, µ(T) = T3/2 1+ Sµ

T + Sµ
, (55)

whereSk= 0.648 andSµ= 0.368 for air atTref= 300K and normal pressure. The molecular
Prandtl number is 0.76. In the computation, the length of the periodic domain inx is
L = 2π/α, whereα is the wave number of the mode of interest. The initial condition consists
of a small amplitude (0.01%) random noise onu, v superimposed to the laminar solution of
the problem (Suslov and Paolucci [16]). A stretched grid is used in the normal direction in
order to capture the eigenvector accurately near the walls. The wall normal velocity points
are distributed according to a hyperbolic tangent function (j = 0, 1, 2, . . . , N),

yv( j ) = yj+ 1
2
= tanh(γ (2 j/N − 1))

tanh(γ )
. (56)

A typical result is shown in Fig. 9. In this case the resolution is 24× 100 with γ = 2
for the stretching parameter. The CFL number is fixed at 1. The length of the domain is
L = 2.4πh (α= 5

6
1
h ) and the Reynolds number is 45,000, based on the maximum velocity

and the channel half-heighth. The temperature ratio isT2/T1= 2.33, i.e., δT2 = 0.4. For
these conditions, the flow is linearly unstable (see Suslov and Paolucci [16]). The code
predicts a reasonable (5% error) energy growth rate even if the number of grid points is
rather small in the direction normal to the wall. Note that a fairly long time (10h/uτ ) is

FIG. 9. Time evolution of the global energy of the fluctuations in the computational domain.- - - -, linear
stability theory (Suslov and Paolucci); —s—, 〈u′2〉; —n—, 〈v′2〉; —u—, 〈T ′2〉. Unit of time ish/uτ .
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needed for the mode to settle in. Once the transition phase is finished, the temperature
and the two velocity components develop with exactly the same rate, as dictated by linear
stability theory. The four schemesAdvSC,DivSC,DivSCapprox, andDivSCρ give very similar
results (AdvSCshown). The success ofDivSCρ in this test case is due to the fact that only
small temperature (density) perturbations are considered for comparison with the linear
theory. Thus the error in the time derivative of density is negligible compared to the other
space discretization errors (see Subsection 5.1) and the algorithm provides a reasonable
answer.

The algorithmsAdvSCandDivSChave been found to give consistent results over a wide
range of flow and numerical conditions (temperature ratio from 1.01 to 2.33, grid size from
16× 100 to 56× 350). In order to establish the qualitative nature of the algorithms, typical
2D plots of velocity, pressure, and temperature fluctuations are shown in Fig. 10 in which
the complete domain is shown. Figure 11 shows the iso-lines foru andT for the region near
the cold (bottom) wall of the channel. The conditions are the same as for Fig. 9. The modal

FIG. 10. Fluctuations associated with the most unstable linear mode forα= 5
6

1
h
, Re= 45,000, andδT

2
= 0.4.

From top to bottom,u-velocity,v-velocity, pressure, and temperature fluctuations. Dashed iso-lines are negative
values. The mean flow is from left to right and the bottom wall is the cold one. The mesh size is 24× 100.
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FIG. 11. Fluctuations ofu-velocity (top) and temperature (bottom). See the previous figure for the conditions.
Zoom of region near the cold wall.

structure shown in Figs. 10 and 11 is in very good agreement with previous theoretical
findings [17].

5.5. Turbulent Flow in a Channel

Several computations of a turbulent flow in a channel with isothermal walls have been
performed. Results from DNSs are presented first. Results from coarse grid computations
are then discussed in terms of stability.
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5.5.1. Direct numerical simulations.Three direct numerical simulations of a channel
flow between two isothermal walls with temperaturesT1 andT2 were performed. A few
results are shown in this section to illustrate the performance of the method proposed in
Subsections 3.1 and 3.2. A more detailed analysis can be found in [18, 19]. The computations
presented here were performed withAdvSC. Details of the test cases adopted are given in
Table IV.

The indices 1 and 2 denote the cold and hot wall, respectively. The bulk Reynolds
numberRb is based on the bulk velocity and the values of density and dynamic viscosity
corresponding to the bulk temperature. The friction coefficientsC f are based on the mean
density in the channel and the maximum velocity while the heat flux parameter is defined
asBq=qw/ρwCpuτTw, whereuτ is the friction velocity

√
τwρw, qw the heat flux,Cp the

constant-pressure specific heat, andTw the temperature at the wall considered. The friction
Reynolds numberRτ is based on the friction velocity. In Case A the temperature is almost
uniform and the results may be compared to a previous incompressible DNS performed by
Kim et al. [20, 21]. In Cases B–C one expects the temperature (density) variations to be large
enough to modify the momentum balance through both viscous and inviscid effects. In each
case the domain size is (4πh, 2h, 4πh/3) and the grid contains 120× 100× 120 cells. The
mean flow is along thex-direction. The statistics were obtained over a time period of order
10h/uτ , whereuτ = (uτ1+ uτ2)/2 is the mean friction velocity. The wall normal velocity
points are distributed according to a hyperbolic tangent function, Eq. (56). The grid spacing
is equivalent for all cases with1x+ ≈ 20,1y+wall ≈ 0.3,1y+max≈ 9, and1z+ ≈ 6, where
the superscript+ denotes the usual wall scalingU+ =U/uτ and y+ = ρwuτ y/µw. The
molecular Prandtl number is 0.76 and the dimensionless thermal conductivity and dynamic
viscosity are chosen to be proportional to 1/

√
T so that the Reynolds number near the hot

wall is not (too) small in comparison with its value near the cold wall [18]—see Table IV.
It was shown in [19] that the ratioGr /R2

τ (Gr is the Grashof number) is small compared to
unity as long as the characteristic length scale of the channel is of order 1 cm or less. This
would be a reasonable range for a true experiment with temperature differences typical of
a laboratory combustion chamber. Consequently, the buoyancy effects are neglected in the
present test cases.

Many experimental data support the validity of the Van Driest [22] transformation for
wall-bounded turbulent flows with variable density. This transformation reads

U+V D=
∫ u+

o

(
ρ

ρw

)1/2

du+ = 1

κ
ln y+ + C. (57)

Figure 12 shows that the present calculations also give support to the transformation (57).
When the classical incompressible coordinates are used instead, a logarithmic region can
hardly be observed. Note also that Case A is in very good agreement with the law-of-the

TABLE IV

Description of the DNSs

Case T2/T1 Rτ1 − Rτ2 Rb 103Cf 1 103Cf 2 Bq1 Bq2

A 1.01 182− 185 2855 6.1 6.1 ≈0 ≈0
B 2 195− 164 2810 7.0 5.0 −0.018 +0.016
C 4 211− 151 2818 8.2 4.2 −0.041 +0.029
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FIG. 12. Mean velocity profiles. Top figure without the Van Driest transformation Eq. (57); bottom figure
with it. —, Case A;· · ·, Case B; ---, Case C; , u+ = y+ andu+ = 2.5 ln y+ + 5.5.

wall u+ = 2.5 ln y+ + 5.5, as proposed in [20]. Regarding the velocity fluctuations and the
Reynolds stress−u′v′, this computation is also in very good agreement with the incompress-
ible DNS data from Kimet al. [20]—see Fig. 13. Figure 14 shows a very good qualitative
agreement for the temperature fluctuations in Case A when compared to a passive scalar

FIG. 13. Root-mean-square velocities and Reynolds stress from the DNS (Case A) in wall units. Symbols
from Kim et al. [20]. s, u+rms; n, v+rms; u, w+rms; e, u′v′

+
.



94 F. NICOUD

FIG. 14. Root-mean-square of the temperature fluctuations from Cases A, B, and C, non-dimensionalized by
the temperature differenceT2 − T1. —, Case A;· · ·, Case B; ---, Case C;s, passive scalar case withPr = 0.71,
Kim and Moin [21].

calculation [21]. The slight quantitative difference is most likely due to the difference in
Prandtl numbers (Pr = 0.76 for Case A,Pr = 0.71 in [21]). In each of the Cases A–C, the
streamwise velocity-temperature correlation coefficient is very high near the walls (of order
0.95, as in [21]). Subsequently the temperature field reveals the elongated streaky structure
of turbulence near the wall. This is illustrated for Case A in Fig. 15 which shows iso-lines
of u-velocity and temperature fluctuations in a plane located approximately 5 wall units
above the cold wall. As already observed in previous studies, the temperature field is a good

FIG. 15. DNS of a channel flow withT2/T1= 1.01 (Case A). The position ofx − z plane isy/h ≈ −0.975,
i.e., 5 wall units above the cold wall. The flow is from left to right. Top, contours ofu+-velocity fluctuations: the
range is [−2,+6], the increment is 1, dashed contours represent negative values. Bottom, contours of temperature
fluctuations (non-dimensionalized byT2− T1): the range is [−0.04, 0.04], the increment is 0.02, dashed contours
represent negative values.
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FIG. 16. DNS of a channel flow withT2/T1= 4 (Case C). Typicalz− y plane. Top, contours ofw+-velocity:
the range is [−4, +4], the increment is 0.4, dashed contours represent negative values. Bottom, contours of
temperature (non-dimensionalized byT1): the range is [1, 4], the increment is 0.15, dashed contours represent
values smaller that(T2 + T1)/2.

marker for the bursting events, as shown in Fig. 16 for Case E. Of interest also in this figure
is the position of the iso-lineT = (T1 + T2)/2. It is clearly skewed towards the hot wall.
Indeed, the Reynolds number in the hot region being smaller than in the cold region—see
Table IV—the linear sub-layer close to the top wall is thicker. As a consequence, the mean
temperature decreases faster near the top wall (y=+1) than it increases near the bottom
one (y=−1). The iso-lines of thew-velocity in Fig. 16 reveal the streamwise vortices
responsible for the streaky structure shown in Fig. 15.

5.5.2. Coarse grid computations.In algorithms of the typeDivSCρ where a constant
coefficient Poisson equation (43) is solved for the pressure field, the projection step was
found to be the most destabilizing part of the method and density ratios larger than 3 are
difficult to compute [6]. In the present algorithmsAdvSC, DivSC, or DivSCapprox, the exact
constraint on the velocity field is enforced. Further computations of the channel flow were
performed to see whether the methods proposed are more stable. The numerical and physical
parameters are the same as before, except for the grid which is now 32× 80× 32. This mesh
is too coarse to reproduce all the scales that are dynamically important. However, its resolu-
tion makes it computationally inexpensive to use and it was therefore considered suitable for
investigating the stability characteristics of the different algorithms. The temperature ratios
considered were 1.01, 2, 4, 6, 8, and 10. The algorithmDivSCρ is found to be unstable for
T2/T1 greater than 4. However, the other algorithmsAdvSC, DivSC, andDivSCapproxremain
stable up toT2/T1= 10. Larger temperature gradients were not considered since most of the
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low-Mach number flows have temperature ratio less than 10 (piston engine, rocket engines,
burners, etc.). For casesT2/T1 ≥ 6, the temperature field was clipped to values greater than
the temperature imposed at the cold wallT1. Indeed, with this coarse grid, a large amount of
energy is present at the highest wave numbers (a common feature with more realistic LESs).
For these scales the dispersion phenomenon is important and may generate negative values
of temperature if a non-positive scheme is used. The clipping to values greater than the cold
wall temperature is justified since there is no physical mechanism which can decrease the
temperature below this point. It emulates a TVD or ENO scheme which should be used for
temperature. Since such techniques are well known but beyond the scope of this study, we
preferred to use the simple clipping approachT > T1 when necessary. From the fine grid
computations discussed earlier in this section, the proposed algorithms are accurate enough
to represent the near wall complexity of turbulent flows with strong heat transfer. From
the coarse grid simulations, these algorithms can handle larger temperature ratios than the
methods used in most previous studies.

6. CONCLUSION

Conservation of kinetic energy was specified as an analytical requirement for a proper set
of discrete equations in the zero-Mach number limit. The proposed algorithms are fourth-
order accurate in space and dissipation-free. A key ingredient is a variable coefficient Poisson
equation to solve for pressure. This elliptic operator ensures that the proper constraint is
applied to the velocity field at each (sub-)step of the time integration procedure. Noticeably,
the divergence-free constraint is recovered in the inviscid limit as required from the low-
Mach number approximation to the Navier–Stokes equations. It is shown that this feature
is necessary to avoid violating conservation of kinetic energy. A proper discretization of
the non-linear terms is also proposed that can handle any density variation and still remains
conservative in kinetic energy. The only violation in the kinetic energy conservation appears
in the projection step and is related to the non-linear state equation. A fully conservative
scheme is obtained if instead an approximate state equation is used.
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