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Three finite-difference algorithms are proposed to solve a low-Mach number ap-
proximation for the Navier—Stokes equations. These algorithms exhibit fourth-order
spatial and second-order temporal accuracy. They are dissipation-free, and thus well
suited for DNS and LES of turbulent flows. The key ingredient common to each of the
methods presented is a Poisson equation with variable coefficient thatis solved for the
hydrodynamic pressure. This feature ensures that the velocity field is constrained cor-
rectly. It is shown that this approach is needed to avoid violation of the conservation
of kinetic energy in the inviscid limit which would otherwise arise through the pres-
sure term in the momentum equation. An existing set of finite-difference formulae for
incompressible flow is generalized to handle arbitrary large density fluctuations with
no violation of conservation through the non-linear convective terms. An algorithm
which conserves mass, momentum, and kinetic energy fully is obtained when an
approximate equation of state is used instead of the exact one. Results from a model
problem are used to show both spatial and temporal convergence rates and several test
cases are presented to illustrate the performance of the algorithensoo Academic Press

Key Wordslow-Mach number; finite difference; staggered mesh; density gradient;
conservative scheme; Poisson equation.

1. INTRODUCTION

Large Eddy simulation (LES) and/or direct numerical simulation (DNS) can provic
detailed information about turbulent flows that may be difficult to obtain experimentall
However, for the particular class of flow with low-Mach numbdrand strong density
variation, the classical compressible Navier—Stokes equations are not well suited for ¢
putation. The small time step limitation dictated by numerical stability requirements of ¢
plicit methods would require excessive computing times to solve practical flow probler
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72 F. NICOUD

Indeed the sound waves move much faster than entropy or vorticity wavesMken.

At the same time, in flows where the dominating mechanism is free, forced or mixed c
vection, the acoustical mode of energy carries only a small fraction of the energy pre:
in the fluctuating part of the flow. These observations led several authors [1-4] to prof
a set of low-Mach number equations which do not contain acoustic waves but can

describe the entropy and vorticity modes as well as compressibility due to exothermi
of chemical reactions. A fractional-step method is used most often, the pressure field
ing obtained by solving a Poisson equation with the time derivative of the density field
part of the source term [3, 5] destabilizing part of the algorithm [6]. Even-ordered fin
difference approximations to this derivative were found to be more stable but density ra
larger than 3 are difficult to compute. Sandoval (reported in [6]) found that by decreasing
Reynolds number, larger variations in density could be achieved. Larger density ratios s
computable by using a predictor-corrector time-stepping algorithm in which the predic
uses a second-order Adams—Bashforth time integration scheme and the corrector reli
a quasi-Crank—Nicolson integration with the inversion of a pressure Poisson equatio
each step [7, 8].

As far as incompressible Navier—Stokes equations are concerned, experience has <
that the kinetic energy must be conserved if a stable and dissipation-free numerical me
is sought. Indeed, such a property ensures that the sum of the square of the velocities ¢
grow, even through non-linear interactions between modes. As a consequence, a hum
scheme which conserves kinetic energy cannot be unstable. Moreover, it makes unnece
the use of numerical stabilization through up-winding which is known to introduce too mu
artificial damping in DNS/LES computations. Morinigttial. [9] developed a set of fully
conservative (mass, momentum, and kinetic energy) high order schemes for incompres
flow. However, none of the numerical studies on low-Mach number flows cited abc
addressed this issue. In the present study it is shown that the global conservation of ki
energy is a common feature of incompressible and low-Mach number flows in the invis
limit. A nearly conservative fourth-order finite difference scheme is proposed in which ¢
solves a Poisson equation with variable coefficient for pressure. Also, this algorithm me
use of a generalization of the Morinishi’s finite difference formulae for variable dens|
flow. These two ingredients lead to algorithms which are well suited for LES and/or DI
computations. In particular:

e no numerical dissipation from the spatial discretization is used to stabilize the cc
putation; and,
e they can handle density ratios much larger than 3.

The low-Mach number approximation and the numerical method are discussed in ¢
tions 2 and 3. An error analysis is conducted in Section 4 and some numerical experim
are discussed in Section 5 to show the potential of the algorithm.

2. LOW-MACH NUMBER APPROXIMATION

In compressible flows, a natural parameter to measure the effects of compressibili
the ratio of the dynamic to the thermodynamic pressure 2. To derive the low-Mach
number equations, one expands the dependent variables as a power setigdit, which
is a small parameter (see [1, 3, 6] for details on the derivation of the low-Mach num!
equations). Substituting these expansions into the compressible Navier—Stokes equz
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and collecting the lowest order termseityields

dp  dpu;
DTt B | 1
ot + 0X; (3)
ou; ou; P 1 3‘[”
— Uy—=——+ —— 2
Pt TP T Tax T Reox; @
aT aT 1 9q; y —1dPR,

RePr 0X; y dt '
As body forces have no impact on the numerical methods presented in Sectio
they have not been included in Eq. (2). All the variables are normalized using the
erence state’ef, uref,-|-ref Pref/pref Cref C*(Tref) Mref m (Tref) andkref k*(Tref)
where the superscriptrepresents dlmen5|onal quantities. ARg= p"®'uL"f/,"*" and
P = u"'C[’/ k™" are the Reynolds and the Prandtl number whilis the ratio of specific
heats at the reference state, o, T, k, 1, andC, stand for the non-dimensionalized ve-
locity vector, density, temperature, thermal conductivity, dynamic viscosity, and spec
heat.7jj = w(du; /9X; + 0uj/dx — (2/3)8;j (ux/9xk)) andqg; =k(dT/dx;) are the vis-
cous stress tensor and the heat flux vector, respectively. Morddweay be interpreted as
the hydrodynamic pressure. In the low-Mach number approximation, the thermodyna
pressureP, only depends on time and must be computed if it is not constant. The equa
of state is simply

Po=pT. 4)

Since density is uniquely determined by the temperature (and the thermodynamic pre:
which is constant in space), the energy equation acts as a constraint which is enforce
the hydrodynamic pressure. Combining Egs. (1), (3), and (4), this constraint is

i 1 1 9 aT -1 dR,
w _ 1 k) (Y2 e, ) S )
Integrating over the flow domaiw leads to the following ODE for the thermodynamic
pressure in a closed system:

dP 1 1 3 aC
—° = k— |dV + P, | —P dV 6
at  f, (57 —Cp)dV[RePr / 0% ( 3XJ> ! (t)/ ! ] ©

Since [, (3/9x;) (k(dT/3x;))dV = fsk(aT/axj)dS, this relation expresses how the
rate of change of the mean pressure is affected by the heat flux through the Sioface
the domainV and the gradients of heat capacity of the gas. In many practical applicati
such as piston engines and internal ballistics the fluid may be considered as a calorifi
perfect gas so th&@p = 1 and the time derivative d?, is simply

dpR, y 1 ad oT 1 1 oT
2= —(k— )dV = = k—4dS. 7
dt V RP; /V 0X; < 3Xj> V RP; /5 0X; 5 )

Thus the constraint on the velocity field becomes

- () S L5 (] e
0Xi Po(t)RePr [ 0X; 0X;j V Jv 09X 0Xj
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Note that the numerical methods presented in Section 3 remain usable even if the flu
not considered as being a calorifically perfect gas. If the system considered is open, the
thermodynamic pressure is set by atmospheric conditions. If it is closed then the am
of mass in it,Mg, is constant over time so that by integrating the equation of state over 1
whole domain one obtains the following expression for the thermodynamic pressure:

Mo

0= L

©)

Note that in the limit of an inviscid flow of a calorifically perfect gas the thermodyman
pressure remains constant over time (from Eq. (7)) and the velocity field is divergence-
(from Eq. (8)).

The solution p, u;, T, P, P,) is completely described by Egs. (1)—(4) and (7). The
constraint Eq. (8) should also be satisfied since it is a linear combination of Egs. (1),
and (4).

3. NUMERICAL METHOD

The numerical method chosen for solving the variable density momentum and t
perature equations is a generalization of a fully conservative fourth order spatial schi
developed for incompressible flows on staggered grids by Morietdli [9]. A scheme to
solve the momentum equations in non-conservative form is described in the following S
section 3.1. A scheme with “good” conservative properties is discussed in Subsection
Both of these algorithms involve a variable coefficient Poisson equation for the press
For completeness, Subsection 3.3 presents an alternative formulation in which the pre:
is obtained, as proposed in most of the previous studies, through a Poisson equation
constant coefficient and approximate source term.

3.1. Scheme in Non-conservative Form: AdvSC

For a uniform mesh, the advective term in the momentum equation, Eq. (2), is discreti
as

o laxj - 8 51Xj
3X;
g—lXi 1.—3Xi 83Ui !
— | =p@u; — Zp@uy; —_— 10
<810 J 810 J ) 83Xj ( )

where the finite-difference operator with stentécting ong with respect tog; is defined
as

¢ _ @06 +nhi/2) —¢(x —nhi/2)

11
SnXi nhi ( )

and the interpolation operator with stengiacting ong in thex; direction is
= ¢ (X% +nhi/2) + (X — r1hi/2). (12)

2
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o™ is a fourth order interpolation ¢f in thex; direction,

9 1
@i _ 251 To8 13
g’ 8 (13)

When the density is constant, Eq. (10) reduces to the advective form (Adv.-S4) in Morin
et al. [9]. The pressure term in Eq. (2) in discretized by

P 95P 1683P
— = (Pres)i = (VgP)i= -— — = 14
o% (Pres)i = (V4 P); 8506 B5ax (14)
and the discrete divergence operator is defined consistently,
ou; 961U; 143Uy
— =Vy-(U)==-— — ——. 15
ax = v = g T B (15)
The viscous terms in Eq. (2) are written using the generic form
O (O 9 81 [y (98U 16sui
8Xj MBXJ' o 851Xj ’ 851Xj 853Xj
153 ooan (981U 183y
_ 208 | en@n (2000 208 ) ) (16)
853Xj 881X]' 853Xj

Note thatu is successively interpolated in theand j-direction (applying Eq. (13) ta
once ini, once inj) to give the fourth-order interpolatign®)-*)). The advective term for
the temperature is discretized as

1x; 3x

oT 9 . &T 1 . 5T
U—=—po@y, — — Zp@hy —4—— .

PH 8Xj 8p ! 51Xj 8p ! 33Xj

17

A semi-implicit time marching algorithm is used in which the diffusion terms in th
wall normal direction are treated implicitly with a Crank—Nicolson scheme, while a thi
order Runge—Kutta or second order Adams—Bashforth scheme is used for all other te
The temperature equation is advanced first so it is known via the state equation
o = Po/ T, whereP, is first assessed using Eqg. (9) written at time 1. Then a fractional
step method is used to solve the momentum equation,

1 1 A ~
p(4i),n+1 UP+ — uin — p(4i),n+1 U{H— — Ui + p(4i),n+1 U — ui“
At At At
= (1™ 1) + Y E" 4+ BN — 28 Vg P" — 2B, Vgs P, (18)

wherel andE represent all the spatial implicit and explicit terms except for the pressure
n and the pressure updat®"+! = P"*1 — P". The parametergy, y, andgk (k = 1, 3)
can be chosen so that the mixed Runge—Kutta/Crank—Nicolson (RK-CN) time steppir
recovered after the third sub-step (see Spalart [10]). One can also choose their valu
that the mixed Adams—Bashforth/Crank—Nicolson (AB-CN) time stepping is obtainec
each sub-step. The values for the coefficiggtsk, andgk are given in Table I.
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TABLE |
Numerical Parameters for Time Stepping
RK-CN and AB-CN

Sub-step B i 8i
RK-CN k=1 = 2 0
RK-CN k=2 i Z &
RK-CN k=3 : 2 =
AB-CN k=1,3 : 2 -1

Equation (18) is then split into a decoupled set which is a second-order approxima
in time to the original equation:

0. n
@iynerUi — 4

P = A ML) + wE" + G EM = 28V P" (19)
(@).n+1 ut 0 _ n+1
0 AL = —2BVysP" . (20)

Equation (19) is solved fdk; by using the discretizations (10), (14), and (16). Then (2C
is divided byp“)-"+1 before its discrete divergence is taken to obtain

1 1 N n+1
Vg (WVd(S P) = At (Vd -0i — Vg -y ) . (21)

A similar Poisson equation with variable coefficient was solved by Bell and Marcus [11]
impose the divergence-free constraint for variable-density flows—see also [12, 13].

Since the transport equation férhas been advanced prior to the momentum equatio
the last term in the equation for the pressure variation is known from Eq. (8), written
time n 4+ 1. The variable coefficient Poisson equation Eq. (21) for the pressure is sol
using the (pre-conditioned) conjugate gradient algorithm. In the case where homogen
directions exist, it is worth pre-conditioning Eq. (21) by the elliptic operator,

Va - (WW) , (22)

where() denotes a spatial averaging in the homogeneous directions. In this case one
make use of a FFT-based fast Poisson solver at each iteration of the conjugate gra
algorithm. In the more general case it is worth solving for the modified unkrédyi /o
[14]. The advantage of solving Eg. (21) to update the pressure is that the divergence
constraint is recovered in the inviscid limit, as it has to be from Eq. (8). This is not the c:
when a backward approximation %ﬁ is used to compute the source term of a linear Poissc
equation folB P as proposed earlier [3, 6] (see also Subsection 3.3). The other advantag
that the pressure terms remain energy conserving in theRigtumber limit, as discussed
in the following subsection.

3.2. Fully Conservative Scheme: DivSC, Divigfox

Although the previous scheme was found to be accurate, it only conserves momentun
kinetic energy to its own order of accuracy. Experience has shown that the latter qua
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must be conserved exactly if a stable and dissipation-free numerical method is sot
Morinishi et al. [9] developed a set of fully conservative (mass, momentum, and kine
energy) high order schemes for incompressible flow. In the general case of the Na\
Stokes equations without body force, the transport equation for the kinetic eplefgr
unit volume reads

dpk  dpujk

3PUJ' 8‘Cijui
—=PSj -
ot 0Xj

0Xj 0X;

— Tij Sj- (23)

Let us consider a periodic (or infinite) domain so that, after Eq. (23) is integrated o
the domain, the flux term8pu;k/9x; anddPu;/dx; make no contribution. Due to the
dissipation termy;; §;, the question of conservation of the kinetic energy is only relevant
the inviscid limit wherer;; = 0. We know from Eq. (8) that in this limit, the velocity field is
divergence-free, that i§5;; = 0. Thus global conservation of kinetic energy is a commo
feature of incompressible and low-Mach number flows. The purpose of this section i
investigate how this property can be extended in discrete space.

Let us define the following discrete approximations of the possible forms for the n
linear term in the momentum equation:

9/9 . ; 1 _ : S1Ui
(AdV.)i = é (8p(4l)ujlx _ 8p(4])uj3x> 1U|-

179 w1 3\ Ol
_ o Z5@hy T~ =@y ) 24
8(8'0 TP ) s (24)
_ 9 s 9 1 13\ .,
(Div.)j = éﬁ |:(8p(4l)uj X éIo(4l)uj X) ui1XJ:|
16 9— 11— .
]
1 .
(Skew; = > ((Adv); + (Div.);) . (26)

The forms(Adv);, (Div.);, and (Skew); are the discrete equivalent to the advective
pU;j (0u; /3X;j), conservativépu;u; /dX;, and skew—symmetriis(puj (0u; /9xj)+(dpuiu;/
9x;)) forms of the convective term. Note that the discrete operator in Eq. (24) is the s¢
as that in Eq. (10). The following relations holds between these three discrete forms,

(Div.); = (Adv); + U (g (Cont) ™ — %(Cont.)sx‘> (27)
(Skewi = (Adv.); + %ui (2(Cont.)lxi - ;(Cont-)sxi> (28)
(Skew); = (Div.); — %Ui (g(cont.)lxi — %(Cont-)sx‘) : (29)

where

98, 0%u; 18:0@Du;
(Cont) = > 1P i L3P j
8 51Xj 8 53Xj

(30)

is the discrete form of the divergence of the momentum veiiag /9X; .
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A key assumption in the semi-discrete analysis proposed in Morieishl. [9] for
incompressible flow is that the operai@ont) is identically zero so that the three forms
(Div.)j, (Adv.);, and(Skew); are equivalent. SincéDiv.); is conservative a priori for the
momentum equation angkew); is conservative a priori in the kinetic energy equation
a fully conservative scheme is obtained as soon as the velocity constrgiftix; =0
is imposed properly through the pressure correction step. In the present case wher
density is not constant, the velocity constraint; /0x; = O (in the highRe limit) does
not imply thatdpu; /9x; is zero. Thus the discrete operatosv.);, (Adv.);, and(Skew);
are not equivalent in the low-Mach number case, meaning that a fully discrete anal
(including the time discretization) must be conducted to achieve conservation of kine
energy.

A conservative scheme for the momentum can be derived by considering the momer
equation in its divergence form. The first guess for the velocity is obtained by solving

PG — pU-nyn
At

= —n(DiV.)! — ¢ (Div.)M 1 — 2B, (Pres)", (31)
where g can be eithep” or p"*1 or any intermediate value. Then the projection step i
written as

15(4i)

1
n+1 _
U ~ p@n+t Ui — 2Bk it p@).n+1 VadPAL, (32)

where the Poisson equation ##P must be

1 1 p n+1

Obviously, Egs. (31), (32), and (33) constitute a scheme which is momentum conserv
To investigate whether it also conserves kinetic energy, let us multiply Eq. (34)-by
and integrate over the whole domain. The overall contribution of the pressure term involy
u’ in the kinetic energy equation behaves like

9 81P 1 &P
u'(Pres)'dV = ul —up dv, 34
/v ¢ h /(8 'S 8 83 ) (34)

where

9 5P 1 83P _98UTPY 1557 P _p(9%] Lol (35)
8 5 8 33X| 8 81X 8 63X 8 51X 8 §3%; ’

The first two terms of the RHS of Eq. (35) do not contribute because they are in diverge
form. The last one is identically zero because the variable coefficient Poisson equa
Eq. (33), is solved withVg - uM™ = (9/8) (81Ul /81%:) — (1/8) (83ul*/83x;) = 0 imposed
in the source term (i.e., the projection step Eq. (32) imposes the divergence-free const
exactly). The other pressure termligPres) and its overall contribution is of ordext
becausd); = u' + O(At) and the integral ofi (Pres); is zero.
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Using Eq. (26), the overall contribution of the convective terms in the RHS of Eq. (¢
may be written as

/ (0 + u?) (—n(Skew] — zi(Skew' ™) dV
\%

G +u' /9 1 .
—yk/ Ui J;u' u{‘(—(Cont.)“lx' - —(Cont.)”gx'> dv
\

—Ck/ Gi;u n1< W'_,W ')dv. (36)
\

The first integral in Eqg. (36) contributes to the order becauseSkew); is kinetic
energy conserving in nature and becaiisa”, andu'~* are equal to the ordext. Thus
an approximation to the ordext of the overall contribution of the full RHS of Eq. (31) is

(: n a4y 1
—yk/ U+ u u{‘(g(Cont.)“lx' _ —(Cont.)”3X> dv
\%

2
Gi +u n 1 TR R 73X
— & > (Cont)” i _ f(Cont)“ 1 dv. (37)
\%
On the other hand, the contribution of the LHS of Eq. (31) may be written
~4i)(.\2 _ ,@),n 2 ~@4i) _ (4i),n
/p ()" = p7 (D) dV+/u ol "2 " qv. (38)
v At v At

Comparing Egs. (37) and (38) it appears that the discrete rate of change of the kir
energy (the first integral in Eq. (38) is at most of oraddrif one defines the intermediate
density as

n

p—p

I —(Cont)" — g (Cont)" L, (39)

In the context of a second order scheme, the same definitipwafs"adopted (C. Pierce,
private communication) to achieve approximate conservation of kinetic energy.

Multiplying the projection step Eq. (32) b + u”+1 and integrating over the whole
domain, the following expression can be derived:

@)+l (Y2 _ 5 g2 i) _ (i)n+l
/p (u A)t P gy = /au”“%dwromt). (40)
v v

This shows that the global rate of change of the kinetic energy is of aktlesnly if
P — p@n+l — O(At"), n > 2. Unfortunatelyn is only 1 in the most general case.

A conservative schemd®{vSGypproy IS Obtained if one accepts that the state equatiol
Eq. (4), is verified to the ordekt only, viz.,

. P
P =p = =7 + O, (41)
In this case, the error in the global kinetic energy conservation is at most of dtder
each sub-step. If one accounts for the cancellation of error in the full third-order Run
Kutta procedure, it can be shown that the error is actually of ontér The same order
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was achieved for incompressible flows in Morinighial. [9]. The Adams—Bashforth time
integration is not considered here since it is unstable for inviscid flows (see Section 4).

3.3. Scheme with Approximate Poisson Equation: DiySC

The third algorithm is similar to the one in Subsection 3.2 except for the Poisson equa
for the pressure. Itis briefly described in this section for completeness. One keeps the
scheme, Eq. (31), for the first guess of the velocity. The projection step is now written :

p @MYL — 5EDG — 28, VyS P AL, (42)

where the Poisson equation #¥P must be

1 . _
Vg VadP = ——— (Va- (p™0i) — Vg - (p@ " iuPtt)) . 43
d- Vd 2ﬁkAt( a- (A™0) —Va- (p ) (43)
The divergence of momentum at time lewel 1 is unknown but it can be assessed by
using the continuity equation:

) 8p n+1

Vd A (p(4|),n+1uin+l) — _ﬁ ) (44)
Since the temperature field is advanced first, the equation of state, Eq. (4), can be us
compute the density at levael+ 1. Then a backward discretization for the time derivative
of density can be used to assess the source term in Eq. (43).8#niseof orderAt, the
source term in the Poisson equation is of ordéroo. Since in this source term the time
derivative of density is divided by the time step (see Eq. (43)), the backward discretiza
must be at least second-order accurate for consistency. A possible choice is

sp™t  [(Ath + Ath-1)® — AtF]o™ — (Aly + Ath_1)?0" + AtZo" 45)
st Atp Atn_1(Aty + Ath_1) :

Obviously, Egs. (31), (42), and (43) constitute a scheme which is momentum conserv
However, it is not kinetic energy conserving because the divergence-free constraint is
recovered in the inviscid limit. Thus the overall contribution of the pressure term does
vanish as in Subsection 3.2. The test cases in Section 5 show that this algorithm is
stable and accurate th&nvSCand AdvSC However, the Poisson equation, Eq. (43), is
with constant coefficient and can be solved very efficiently. Subsequently, it seems that
approach was used in all the previous studies dealing with low-Mach number flows [1-
The approach involving a Poisson equation with variable coefficient as in Subsections
and 3.2 was preferred in [11-13].

The conservative properties of the schemes described in Section 3 are summariz
Table Il. Recall thaAdvSC DivSC andDivSG, stand for the schemes discussed in Subse
tions 3.1, 3.2, and 3.3, respectiveBivSGypprox denotes the case where the state equatic
Eq. (4) is not enforced exactly—see Subsection 3.2. The particular conservation prope
of each of the schemes considered are denoted by a cross. The columns “convective,”
sure,” and “projection” refer to kinetic energy conservation with respect to the convect
and pressure terms (in the momentum equation) and the projection step, respectively
table also specifies whether or not the exact state equation (4) is enforced.
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TABLE Il
Properties of the Different Algorithms

Mass Momentum Convective Pressure Projection State

AdvSC X X X
DivSC X X
DivSCGpprox X X

DivSC, X X X X

Note.A scheme has a given property if the entry is checked.

From the channel flow computations performed in the course of this study, (s
Subsection 5.5), the CPU time required per iterationDarSC is between R and 2
times higher than that needed DIvSG,; the higher the temperature ratio, the highe
the cost. The cost difference arises mainly through the resolution of the variable coeffic
Poisson equation (33). This difference is expected to decrease in cases with comple
ometry which require the use of an iterative method for Eq. (43) of algorDwsC,.
Recall that a FFT-based fast Poisson solver has been used in the present study. Th
for algorithmAdvSQds slightly smaller than fobDivSCsince the continuity equation is not
advanced in time.

4. ERROR ANALYSIS

In order to investigate the stability limit of the previous algorithms in the 1D linear ca:
a Fourier analysis was performed which is presented in Subsection 4.1. Convergence
are then described in Subsections 4.2 and 4.3 to show both time and space accuracy
methods developed in this paper.

4.1. Stability

A Von Newmann analysis of the linear 1D convection-diffusion equation

du  du 92u
—+Cc—=v— 46

at o T Vo (46)
was performed to assess the stability of the first step of the algorithms described ir
previous section. Note that in this simple case the forav); and(Div.); in Egs. (24) and
(25) reduce to (convection velocityomitted)

ou _ 27(Uiy1 — Ui-1) — (Ui43 — Ui_3)

X 48h

(47)

Also, in the case of constant viscosity, the spatial differencing Eq. (16) for the diffusi
term is proportional to

82
X

c

—146Qu; + 783(Uj41 + Ui—1) — 54(Uj42 + Ui—2) + (Ui43 + Uj_3)

576n2 “8)

(o5
N
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Denoting the semi-discrete operaids such thabu/dt = A4u], itis straightforward to
demonstrate using Egs. (47) and (48) that its Fourier transfty@) may be expressed as

A . CFL . . Fo
AtAy = —| 7(27S|r(a)h) — sin(3wh)) + 2—88(—730+ 783 cogwh)
— 54 cog2wh) + cog3wh)), (49)

whereCFL = cAt/h andFo = vAt/h? denote the Courant and the Fourier numbers respe
tively while j?= —1. For the full discretization to be stable, it is necessary tad ()

be contained in the stability region of the time differencing for all values.dfhe locus of
At A4(w) is shown for different values dFL andFo together with the stability region of
the Adams—Bashforth algorithm in Fig. 1b. Figure 1a shows the same quantities for the
sical second-order semi-discretization whated, = — jCFL sin(wh) + 2Fo(cogwh) — 1).

As expected, the fourth-order scheme appears to be less stable than the second-orde
Since both semi-discretizationi;z andfl4 are anti-symmetric in the convection part, the
Adams—Bashforth time differencing is always unstabléqm& 0. For finite viscosity, both
spatial schemes are stable, although the domain of stability is smaller for the present fol
lation. For pure diffusion, vizZCFL = 0, the critical Fourier number fod, is 0.25 whereas
for Ay itis 0.197. The same analysis was performed for the third-order Runge—Kunta ti
differencing (not shown). In the absence of viscoskg £ 0), the critical CFL number

is 1.54, compared to the equivalent value for the classical second-order scheme w
is 1.8.

a 10 . . .
<
3
E
b
<
3
E
-1.0 - ' '
~1.00 -0.75 -0.50 -0.25 0.00

Re(At.A)

FIG. 1. Von Newmann stability analysis: (a) second-order centered scheme, (b) present scheme. —, Ad:
Bashforth stability region;. . , locus of At.A. Upper half-planes;o = 0.1 andCFL varies (increment.@); bottom
half-planesCFL = 0.5 andFo varies (increment.05).
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4.2. Time Accuracy

Time accuracy of the numerical methods described in Section 3 was assessed thro
numerical experiment in the 2D periodic domain 28] x [0, 2x]. The initial condition
was settau(x, y,t = 0) = dy/oy+sin(x) x cosy)/(ReP), v(X, y,t =0) = —dy/oxX+
cogx) x sin(y)/(ReP), P(X,y,t =0) = 0andT(x,y,t = 0) = 1 — cogx) x cogy)
so that the constraint on the velocity field, Eq. (8), is satisfied initially (assuming const
viscosity). The stream function is equalio= cogx) x cogy). Several simulations were
performed withR, = 2000 and®;, = 1 and using auniform 1& 16 grid. The number oftime-
steps (Adams—Bashforth time integration) used to cover a given time interval was incre:
from 4 to 32, corresponding to Courant numbers in the range [0.011, 0.088]. One n
computation was performed for which 256 iterations were necessary in order to gene
a highly accurate reference solution. The error in the solutions obtained at tsrgeas
computed as thé,-norm of the difference in the solution for a given time increment whe
compared with the reference solution. Regardingutvelocity, second-order accuracy is
demonstrated in Fig. 2 for all the considered algorithms. The same convergence rate
obtained for they-velocity and for the temperature. An interesting point to note is that tl
convergence rate for the pressure is only unity. This is not related to the density variat
considered here since the same phenomenon is true for the incompressible Morini
algorithm [9]. As discussed by Perot [15], the order of accuracy of the pressure update
not affect the order of accuracy of the velocity field.

4.3. Spatial Accuracy

Other numerical experiments were conducted to study the spatial accuracy of the
gorithms. Only the results foAdvSCand DicSC are discussed in this section since the
spatial differencing for all the previous algorithms reduces to one or the other of these
approaches. The initial condition was the same as that used in Subsection 4.2 and
different uniform grids were considered, namely ones containidg4, 144, and 432
cells. The solutions obtained after a given integration time are dedyte@,s, S144, and
Sazzrespectively § may denote either one of the velocity components, the pressure, or

10 - / ®
PRESSURE ®
_ ®
2
‘,I)N
10" | * :
¥ VELOCITY ¢
-2 ‘ ®
107® : :
1 10 100
Nit

FIG. 2. L,-norm of the difference between the solutianvelocity or pressure) and the “exact” solution as
a function of the number of iterations performed to compute the given time int€y&ivSC @, DivSCprox
0, AdvSC
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TABLE Il
Spatial Convergence Rates foAdvSCand DivSC

u v P T

AdvSC 3.89;419 389;419 406;435 387;392
3.89;418 389;418 404;436 387;390

DivSC 3.88;360 388;360 406;358 387;399
3.87;359 387;359 403;359 387;398

Note.For each entry, the first two values are determined from
Eq. (50) with 6, m) = (16, 48) and1f, m) = (48, 144) while the
third and fourth values are from Eqg. (51) with, (m, k) = (16,

48, 144) andrf, m, k) = (48, 144, 432).

temperature). This grid sampling was chosen so that all the velocity and pressure nod
the 16 staggered grid are common to all the grids. Thenorm of the difference between
two solutions can be computed on the coarser mesh without further interpolation. It is
lieved that in doing so one obtains a more reliable estimation of the spatial convergence
For all the computations, the Courant number was kept to a small v@kie£ 5 x 10-3)

so that the errors associated with the time differencing are small with respect to the sp
differentiation. The number of iterations was 16 for the coarsest grid, 432 for the finest
The convergence rate was computed in two different ways. First the solution obtaine
with the finest grid §432) was interpreted as the “exact” solution. Then assuming a spat
error of the formC.h?, the convergence rate was estimated by

o ~ IN[L2(Sh — Sa32)] — IN[L2(Sm — Sa32)]
In3,

(50)

where @, m) is either (16, 48) or (48, 144). The other way of computindoes not require
knowledge of the exact solution [11] and assumes that theorm of the difference between
two successive grid levels is proportional to the grid spacing in the coarser mesh. Itis
straightforward to show that

5 ~ ML2(Sn = Sm] = IN[L2(Sm — 5]

In3 (1)

where @, m, k) is either (16, 48, 144) or (48, 144, 432). Both estimates Egs. (50) a
(51) were applied to the velocity components, the pressure, and the temperature fi
The results are shown in Table Ill. The fourth-order accuracy of the methods presente
Section 3 is demonstrated.

5. NUMERICAL TESTS

A few test cases were designed to illustrate the performance of the numerical mett
described in the previous section, including the computation of a 1D high-amplitude pt
of density in an inviscid flow, a 1D small amplitude pulse of density in a viscous flo
2D random fluctuations of velocity and temperature, 2D small amplitude fluctuations
a channel, and 3D large amplitude fluctuations in a channel. A brief description of
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Description Sketch Objectives
section 5.1
T = T(x,t)
- 1D
L. #~ uuniform ? || _ congtant pressure
- inviscid P uniform ?
- large fluctuations
section 5.2
T = T(x,t)
-1D - 1D wave structure
- u = u(T) ?
- viscous P =p(T) ? - Prandtl number effect
- small fluctuations
periodic boundary
& u, v, T chosen a,
section 5.3 g randomly at t=0 8
o
- 2D 2 3 Kineti
2 2 - kinetic energy conser-
o] N 8}
_inviee: - violation in - H
inviscid 3 Kinatic emergy 3 vation
. 7 conservation ? k]
- non-linear 3 1)
& &
periodic boundary
no-slip boundary - Temperature T2
. > >
section 5.4 | 3 u, v, T chosen |d | - most unstable mode
rg randomly at t=0 'g
3 3 .
-2D 2 ® 2 | selection
5] . . L]
- viscous £ kinetic emergy |3 | - modal structure
o growth rate 7 o
. T (linear stability) [T
- linear o g | - growth rate
no-slip boundary - Temperature T1
[RRITTITIKTK KL TL XL
R
i 020%0%0%0%0% CHRLRKIKS
section 5.5 ooooooo‘m dodetetelede
= 03020202020 20 I o 204 %0%0 %% %04 o
LRI HAIELHIRRAS - DNS capability
20000000 2020020 2020 2020 %0 202
- higher density ratios
- viscous
on coarse grid
- non-linear

FIG. 3. Basic test cases for the low-Mach number algorithms.

different test cases is provided in Fig. 3 which also summarizes the assumptions an
objectives for each test case. The time integration must be RK-CN for the inviscid
cases while either RK-CN or AB-CN can be used for the viscous ones. RK-CN has b
used for the test cases in Subsections 5.1, 5.3, and 5.4. The time integration is AB-C
Subsections 5.2 and 5.5. The results obtained are discussed in more detail in the follo

subsections.

5.1. The 1D Euler Convection

Ifthe Peclet number is infinite, the velocity field must be divergence-free, thiatisst be

constantin 1D. Also, the pressure should remain constant. To test the ability of the diffe

formulations to reproduce this feature of Egs. (1)—(3), consider the domam01, pe-
riodic in x. The initial condition isu=ug=1, P =0, andT =1+ Aexp[—((X — Xo)/a)?]
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FIG. 4. Root-mean-square of pressure as a function of the grid spacing at#86a,/u,. —, Pims ¢ AX*,
@, DivSC [J, AdvSC A, DivSG,.

with A=1, xg=0.5, anda = 0.05. When the grid containd, = 24 points, only 6 points
are used to describe a Gaussian perturbation. Figure 4 sRau/sou3 as a function of
the grid spacing (this quantity is also the erroFf,s since the exact solution Bnys=0).
Three grid levels were considered: 24, 48, and 96 pointsTine rms of pressure is assesse
for the timet = 20a/uo. The CFL number is of order.Bin all cases. SincAdvSCrenders
the exact solution for this particular test case, the corresponding results are not includt
the figure. The divergence is zero ivSCbecause it is explicitly enforced through the
Poisson equation, Eqg. (33). On the other hand, the divergence-free constraint is not enf
in the algorithmDivSC, and the velocity does not remain constant. Since the error in tl
backward difference equation, Eq. (45), is proportional to a high-order time derivative
density, one expects the error in the source term of the Poisson equation, Eq. (43),toinc
with the amplitude of the density perturbation. In other words, the error in the divergenc:
velocity should be proportional to the amplitudeof the initial temperature perturbation,
at least for small values @&. This is illustrated in Fig. 5.

10 . { 1
. A
10° .
£ A
=
Y
© 1
107 | . 1
A
10" 107 10°

Puise Amplitude

FIG. 5. Maximum of divergencej—‘x‘ as a function of the amplitudé of the temperature perturbation.
— & o A; A, DIVSG,.
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FIG.6. Root-mean-square of pressure as a function of the Prandtl nuRypgs non-dimensionalized by its
theoretical value as a function f, viz. (4/3R2P?)(9%T'/3x?)ms. Note that the abscissa® — 3/4. —, exact
solution Eq. (54)0O, DivSC [, AdvSC

5.2. Small 1D Perturbations

In the case where the Reynolds number is finite but where the perturbation in temper:
is small (A « 1), the analytical resolution of Egs. (1)—(3) can be conducted and the struct
of the perturbation which propagates is given by

,_ PO,
o = _?ZT (52)
1 0T’/
u = 53
ReP 90X (53)
) 4 T 3
P =3R§P,23><2<Pr_4)' (54)

An interesting feature is that the pressure fluctuation should vanish in theFtimit%.
Figure 6 shows the errorin Eq. (54) in the cige= 24,a = 0.05, A = 0.01, andR. = 50.
The initial condition is uniform fou and P and the physical time simulated is large enougl
(t ~ 160a/up) so that the values reported in the figure are asymptotic values.Be8C
and AdvSCare in complete agreement with the theory. In order to derive the analyti
relationship Eq. (54) betwegni andT’, one makes use of the constraint on the divergenc
of the velocity field which reduces to Eq. (53) in the present case. Since this constrail
not properly imposed by the algorithDivSC,, there is no reason to expect that this metho
givesresultsin agreementwith Eq. (54). Instead, the pressure fluctuation should only de
on the initial temperature fluctuation (shape and amplitude). Accordingly, Fig. 7 shc
that the rms of pressure behaves IRé when scaled by4/3R2P?2)(3%T’/3x?)ms as in
Fig. 6.

5.3. The 2D Random Perturbations

To validate the results of Subsection 3.2 with numerical tests, inviscid flow simulatic
were performed on a 2D periodic domain. The analytical solution dictates that the
tal momentum in each directiofpu;) and total kinetic energyK) = %(pu?) should be
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FIG.7. Root-mean-square of pressure as a function of the Prandtl nuRyhgs non-dimensionalized by its
theoretical value as a function ®f, viz. (4/3R2P?)(3°T'/3X?)ms. The abscissa iB,. —, Pms & P?; A, DiVSG,.

conserved in time. The domain issx <L, O0<y<L and a 24x 24 mesh is used.
Solenoidal velocity fields are used as the initial condition together with random temg
ature fluctuations. The initial mean kinetic energy is of ordérvthile T,ms~ 0.15(T) at

t =0. Figure 8 shows the relative error for the total kinetic engi§y — K)/(Ko) after
an integration time of =0.125L /./{Kg). As expected from Subsection 3.2, the error fol
the schem®ivSCdoes not behave likat® because of the violation in the conservation of
kinetic energy related to the non-linear equation of state Eqg. (4). On the other hand, it
pears that the same scheme with the approximate equation of state (Eq. (41)) conserv
global kinetic energy to the ordext® as predicted in Subsection 3.2. The schénesC,
violates the conservation of kinetic energy even if the approximate equation of state is u
This is because the divergence-free constraint is not recovered in the inviscid limit w
the Poisson equation, Eq. (43), is used. Thus the pressure term is not kinetic energy
serving forDivSGC, (see Subsection 3.2, Eq. (35)) which was found unstable for the pres
test case. The convective terms in the algorithdvSCviolate the conservation of kinetic
energy.

<K, - K>/ <K>
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FIG. 8. Kinetic energy conservation errofi, — K)/(Ko)) as a function of the Courant number. -Af3
behavior; ---,At behavior;O, DivSC @, DivSCpprox



SCHEMES FOR LOW-MACH NUMBER FLOWS 89

5.4. Linear Stability in a Channel

To check the accuracy of the algorithm in the case where the physical properties
in space and time through the temperature, the evolution of low amplitude eigenmode
laminar channel flow is simulated. The linear stability problem in a channel flow betwe
two isothermal walls with temperatuiie = 1— % andT, = 1+ % was studied by Suslov
and Paolucci [16] under the low-Mach number assumption. They found that the crit
Reynolds number increases with the paramé%erlt is of order 40,000 for% =04,
compared to 5,772 in the isothermal cad& £ 0). In their analysis the dimensionless
thermal conductivity and dynamic viscosity are given by Sutherland’s law,

_rielt

1
e u(my = 73215 (55)

k(T) TS,

whereS = 0.648 andS, = 0.368 for air afl.;= 300K and normal pressure. The molecular
Prandtl number is .@6. In the computation, the length of the periodic domairxirs

L = 27 /a, wherex is the wave number of the mode of interest. The initial condition consis
of a small amplitude (@1%) random noise om, v superimposed to the laminar solution of
the problem (Suslov and Paolucci [16]). A stretched grid is used in the normal directiol
order to capture the eigenvector accurately near the walls. The wall normal velocity pc
are distributed according to a hyperbolic tangent functioa 0, 1, 2, ..., N),

tanh(y (2j/N — 1))
tanh(y) '

Yo() =Yj1 = (56)
A typical result is shown in Fig. 9. In this case the resolution ix2D0 withy =2
for the stretching parameter. The CFL number is fixed at 1. The length of the domai
L =247h (¢ = 2}) and the Reynolds number is 45,000, based on the maximum veloc

and the channel half-height The temperature ratio i§,/ T; = 2.33, i.e.,% =0.4. For
these conditions, the flow is linearly unstable (see Suslov and Paolucci [16]). The c
predicts a reasonable (5% error) energy growth rate even if the number of grid point
rather small in the direction normal to the wall. Note that a fairly long timeh(1Q) is

107

1 0“12 L I L
0 10 20 30 40

Time

FIG. 9. Time evolution of the global energy of the fluctuations in the computational domain, linear
stability theory (Suslov and Paoluccifp—<u?); —A-, (v?); -5, (T'?). Unit of time ish/u,.
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needed for the mode to settle in. Once the transition phase is finished, the temper:
and the two velocity components develop with exactly the same rate, as dictated by li
stability theory. The four schem@slvSCDivSC DivSGypprox andDivSG, give very similar
results AdvSCshown). The success BiivSG, in this test case is due to the fact that only
small temperature (density) perturbations are considered for comparison with the lir
theory. Thus the error in the time derivative of density is negligible compared to the ot
space discretization errors (see Subsection 5.1) and the algorithm provides a reaso
answer.

The algorithmsAdvSCandDivSChave been found to give consistent results over a wic
range of flow and numerical conditions (temperature ratio frad 10 233, grid size from
16 x 100 to 56x 350). In order to establish the qualitative nature of the algorithms, typic
2D plots of velocity, pressure, and temperature fluctuations are shown in Fig. 10 in wt
the complete domain is shown. Figure 11 shows the iso-linasdodT for the region near
the cold (bottom) wall of the channel. The conditions are the same as for Fig. 9. The mq

/”
0.5\ /_\ PPN
gl ﬁ LLiplil e AN

FIG. 10. Fluctuations associated with the most unstable linear modeof £, R. = 45,000, and- =0.4.
From top to bottomuy-velocity, v-velocity, pressure, and temperature fluctuations. Dashed iso-lines are nega
values. The mean flow is from left to right and the bottom wall is the cold one. The mesh sizg H24
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FIG.11. Fluctuations ofi-velocity (top) and temperature (bottom). See the previous figure for the conditior
Zoom of region near the cold wall.

structure shown in Figs. 10 and 11 is in very good agreement with previous theoret
findings [17].

5.5. Turbulent Flow in a Channel

Several computations of a turbulent flow in a channel with isothermal walls have b
performed. Results from DNSs are presented first. Results from coarse grid computa
are then discussed in terms of stability.
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5.5.1. Direct numerical simulations.Three direct numerical simulations of a channe
flow between two isothermal walls with temperatuiigsand T, were performed. A few
results are shown in this section to illustrate the performance of the method propose
Subsections 3.1 and 3.2. Amore detailed analysis can be found in [18, 19]. The computa
presented here were performed wibvSC Details of the test cases adopted are given i
Table IV.

The indices 1 and 2 denote the cold and hot wall, respectively. The bulk Reync
numberR; is based on the bulk velocity and the values of density and dynamic viscos
corresponding to the bulk temperature. The friction coeffici€ntare based on the mean
density in the channel and the maximum velocity while the heat flux parameter is defi
asBq =0, /pwCpu. T, Whereu, is the friction velocity, /7, 0., 0., the heat fluxC, the
constant-pressure specific heat, dpdhe temperature at the wall considered. The frictior
Reynolds numbeR; is based on the friction velocity. In Case A the temperature is alma
uniform and the results may be compared to a previous incompressible DNS performe
Kim etal [20, 21]. In Cases B—C one expects the temperature (density) variations to be |
enough to modify the momentum balance through both viscous and inviscid effects. In ¢
case the domain size is;/t4, 2h, 47h/3) and the grid contains 120100x 120 cells. The
mean flow is along the-direction. The statistics were obtained over a time period of ord
10h/u;, wheret; = (u;1 + U;2)/2 is the mean friction velocity. The wall normal velocity
points are distributed according to a hyperbolic tangent function, Eq. (56). The grid spac
is equivalent for all cases withx* ~ 20, Ay}, ~ 0.3, Ayt~ 9, andAz* ~ 6, where
the superscript denotes the usual wall scaling™=U/u, andy* = p,U,y/u,. The
molecular Prandtl number isT6 and the dimensionless thermal conductivity and dynam
viscosity are chosen to be proportional to/T so that the Reynolds number near the ho
wall is not (too) small in comparison with its value near the cold wall [18]—see Table |
It was shown in [19] that the ratiG, / R? (G, is the Grashof number) is small compared tc
unity as long as the characteristic length scale of the channel is of order 1 cm or less.
would be a reasonable range for a true experiment with temperature differences typic
a laboratory combustion chamber. Consequently, the buoyancy effects are neglected i
present test cases.

Many experimental data support the validity of the Van Driest [22] transformation f
wall-bounded turbulent flows with variable density. This transformation reads

ut 0 1/2 1

U\J,rDz/ (—) dut==Inyt +C. (57)
o pw K

Figure 12 shows that the present calculations also give support to the transformation

When the classical incompressible coordinates are used instead, a logarithmic regiot

hardly be observed. Note also that Case A is in very good agreement with the law-of

TABLE IV
Description of the DNSs

Case Tz/Tl R — Ry Ry 103Cf1 103sz Bql qu
A 1.01 182— 185 2855 61 6.1 ~0 ~0
B 2 195-164 2810 0 50 —0.018 +0.016

Cc 4 211-151 2818 & 4.2 —-0.041 +0.029
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FIG. 12. Mean velocity profiles. Top figure without the Van Driest transformation Eq. (57); bottom figu
with it. —, Case A; - -, Case B; ---, Case C;—-—,u" =y" andut =25Iny* + 5.5.

wallut =25Iny* + 5.5, as proposed in [20]. Regarding the velocity fluctuations and tl
Reynolds stressu’v’, this computationis also in very good agreement with the incompre:
ible DNS data from Kimet al. [20]—see Fig. 13. Figure 14 shows a very good qualitativ
agreement for the temperature fluctuations in Case A when compared to a passive ¢

0.0 0.5 1.0
d/h

FIG. 13. Root-mean-square velocities and Reynolds stress from the DNS (Case A) in wall units. Sym
from Kim et al. [20]. O, . A, v O, wit; O, U .

rms? rms?
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FIG. 14. Root-mean-square of the temperature fluctuations from Cases A, B, and C, non-dimensionalize
the temperature difference — T,. —, Case A; - -, Case B; ---, Case @), passive scalar case with =0.71,
Kim and Moin [21].

calculation [21]. The slight quantitative difference is most likely due to the difference
Prandtl numbersK. =0.76 for Case AP, =0.71 in [21]). In each of the Cases A-C, the
streamwise velocity-temperature correlation coefficient is very high near the walls (of or
0.95, as in [21]). Subsequently the temperature field reveals the elongated streaky stru
of turbulence near the wall. This is illustrated for Case A in Fig. 15 which shows iso-lin
of u-velocity and temperature fluctuations in a plane located approximately 5 wall ur
above the cold wall. As already observed in previous studies, the temperature field is a (

FIG. 15. DNS of a channel flow witfT,/ T; = 1.01 (Case A). The position of — z plane isy/h ~ —0.975,
i.e., 5 wall units above the cold wall. The flow is from left to right. Top, contours'efelocity fluctuations: the
range is |2, +6], the increment is 1, dashed contours represent negative values. Bottom, contours of temper
fluctuations (non-dimensionalized By — T;): the range is|0.04, Q04], the increment is.02, dashed contours
represent negative values.



SCHEMES FOR LOW-MACH NUMBER FLOWS 95

FIG. 16. DNS of a channel flow witdl,/ T; = 4 (Case C). Typicat — y plane. Top, contours ab*-velocity:
the range is 4, +4], the increment is @, dashed contours represent negative values. Bottom, contours
temperature (non-dimensionalized By): the range is [1, 4], the increment is18, dashed contours represent
values smaller thafT, + T,)/2.

marker for the bursting events, as shown in Fig. 16 for Case E. Of interest also in this fic
is the position of the iso-lind = (T; + T,)/2. It is clearly skewed towards the hot wall.
Indeed, the Reynolds number in the hot region being smaller than in the cold region—
Table IV—the linear sub-layer close to the top wall is thicker. As a consequence, the m
temperature decreases faster near the top wal-€1) than it increases near the bottom
one (y=—1). The iso-lines of thav-velocity in Fig. 16 reveal the streamwise vortices
responsible for the streaky structure shown in Fig. 15.

5.5.2. Coarse grid computationsin algorithms of the typ®ivSC, where a constant
coefficient Poisson equation (43) is solved for the pressure field, the projection step
found to be the most destabilizing part of the method and density ratios larger than 2
difficult to compute [6]. In the present algorithrAslvSC DivSC or DivSGypprox the exact
constraint on the velocity field is enforced. Further computations of the channel flow w
performed to see whether the methods proposed are more stable. The numerical and ph
parameters are the same as before, except for the grid which is neB@2 32. This mesh
is too coarse to reproduce all the scales that are dynamically important. However, its re:
tion makes it computationally inexpensive to use and it was therefore considered suitabl
investigating the stability characteristics of the different algorithms. The temperature ra
considered were.Q1, 2, 4, 6, 8, and 10. The algorithiivSG, is found to be unstable for
T,/ T1 greater than 4. However, the other algorithhaly SC DivSC andDivSGpproxremain
stable up tdl,/ T; = 10. Larger temperature gradients were not considered since most of
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low-Mach number flows have temperature ratio less than 10 (piston engine, rocket eng
burners, etc.). For cas&s/ T, > 6, the temperature field was clipped to values greater the
the temperature imposed at the cold vallindeed, with this coarse grid, a large amount o
energy is present at the highest wave numbers (a common feature with more realistic LE
For these scales the dispersion phenomenon is important and may generate negative
of temperature if a non-positive scheme is used. The clipping to values greater than the
wall temperature is justified since there is no physical mechanism which can decreas
temperature below this point. It emulates a TVD or ENO scheme which should be usec
temperature. Since such techniques are well known but beyond the scope of this stud
preferred to use the simple clipping approdch- T; when necessary. From the fine grid
computations discussed earlier in this section, the proposed algorithms are accurate er
to represent the near wall complexity of turbulent flows with strong heat transfer. Fr
the coarse grid simulations, these algorithms can handle larger temperature ratios tha
methods used in most previous studies.

6. CONCLUSION

Conservation of kinetic energy was specified as an analytical requirement for a prope
of discrete equations in the zero-Mach number limit. The proposed algorithms are fou
orderaccurate in space and dissipation-free. Akey ingredientis a variable coefficient Poi
equation to solve for pressure. This elliptic operator ensures that the proper constrai
applied to the velocity field at each (sub-)step of the time integration procedure. Noticea
the divergence-free constraint is recovered in the inviscid limit as required from the Ic
Mach number approximation to the Navier—Stokes equations. It is shown that this fea
is necessary to avoid violating conservation of kinetic energy. A proper discretizatior
the non-linear terms is also proposed that can handle any density variation and still rerr
conservative in kinetic energy. The only violation in the kinetic energy conservation appe
in the projection step and is related to the non-linear state equation. A fully conserva
scheme is obtained if instead an approximate state equation is used.
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